
A PROPAGATOR FOR ORDEREDBINARY
DECISION DIAGRAMS

ANNA L.D. LATOUR, BEHROUZ BABAKI, SIEGFRIED NIJSSEN
a.l.d.latour@liacs.leidenuniv.nl

EXAMPLE PROBLEM
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Vertices in probabilistic networks are re-
lated by stochastic processes. Informa-
tion/interaction travels along undirected
paths probabilistically.
Theory compression problem: given
pairs of interacting nodes, find a subset of
edges such that:

• the size of this subset is minimized;
• the expected number of interacting

pairs in the subgraph is at least k.

Decide which edges to include in the sub-
set/theory.

LOGICAL MODEL
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For edge (x, y), introduce two variables:
dxy ∈ {0, 1} (by decision),
txy ∈ {0, 1} (by chance),

where x and y interact if dxy ∧ txy = >.

STOCHASTIC CONSTRAINT
The probability that a and c interact must
be at least θ:

P (φ | σ) ≥ θ,
with σ a strategy (a choice of 0 or 1 for
each dxy), and
φ =(dac ∧ tac) ∨ (dad ∧ tad ∧ dcd ∧ tcd)
∨ (dab ∧ tab ∧ dbd ∧ tbd ∧ dcd ∧ tcd) .

Solving requires
• Weighted Model Counting;
• evaluating (all) strategies.

WEIGHTED MODEL COUNTING (WMC)
Consider a strategy
σi = {dab, dad, dbd, dcd}.
To compute P (φ | σi), we

• enumerate models of φ (σi);
• compute their weights;
• sum the weights.

model weight
{tad, tcd} .3 ∗ .6 ∗ .8 ∗ .5 ∗ .1 = .0072
{tac, tad, tcd} .3 ∗ .4 ∗ .8 ∗ .5 ∗ .1 = .0048
{tab, tad, tbd, tcd} .7 ∗ .4 ∗ .8 ∗ .5 ∗ .1 = .0112

...
...

.087

CONSTRAINT PROGRAMMING: SEARCH & PROPAGATION
There are two main Constraint Programming (CP) techniques. We traverse a search tree
by selecting a variable, assigning a value to it, evaluating the constraint under this partial
strategy, backtracking when needed, until a solution is found. Propagation makes the
domains of variables domain consistent, reducing size of the search space.

ORDERED BINARY DECISION DIAGRAM (OBDD)

• Compile φ into OBDD.
• Paths from root to 1 repre-

sent models of φ.
• Associate weight w = pxy

with outgoing hi arc of
nodes labeled with txy .

• Associate weight (1 − w)
with outgoing lo arc of
nodes labeled with txy .

• Outgoing arcs of nodes la-
beled with dxy get weights
w ∈ {0, 1} to reflect σ.

• Compute value v of each
node as:

v = w ∗ vhi + (1− w) ∗ vlo

• Value of root equals
P (φ | σ).

P (φ | σ)
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Evaluate OBDD for each strategy σ, and check constraint. Improve efficiency by using
constraint solver that uses search and propagation to prune part of the search space.

PARTIAL DERIVATIVES
Goal: identify all ds that need to be fixed
to > for domain consistency.
Method: compute partial derivatives
∂f/∂d, where f is a polynomial that
expresses the value of an OBDD.

The following holds for each d:

∂f (d, σ> \ d)
∂d

= f (σ>)−f (σ> \ d, d = ⊥) ,

with σ> a strategy where each d = >. If

f (σ>)− f (σ> \ d, d = ⊥) < θ,

we fix d to >. This guarantees domain
consistency.

Derivatives allow incremental computa-
tion of f = P (φ | σ). This yields a prop-
agation complexity that is linear rather
than polynomial.

DECOMPOSITION
Method: decompose OBDD into small
constraints, solve with CP solver.
θ ≤ 0.1 ∗ v11 + 0.9 ∗ v9

v11 = dcd ∗ v10 + (1− dcd) ∗ v9 0 ≤ v11 ≤ 0.93

v10 = dac ∗ v8 + (1− dac) ∗ v6 0 ≤ v10 ≤ 0.93

...
...

v2 = 0.7 ∗ v1 0 ≤ v2 ≤ 0.7

v1 = dab

dab, dac, dad, dbd, dcd ∈ {0, 1}
Problem: domain consistency not guaran-
teed for these constraints.

CONTRIBUTIONS

• A general approach for solving
problems modeled in PROBLOG
with stochastic constraints;

• A new solving method based on us-
ing derivatives in CP.
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