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The Viral Marketing problem
running example of a
Stochastic Constraint Optimization Problem (SCOP):
probabilistic spread of influence (word-of-mouth);
constraint on number of free ice cream samples we distribute;
optimal decision making: maximize expected # people who buy ice cream.

Problem: Find a strategy σ (a set of decisions)

which satisfies
∑

i∈people

di ≤ k,

while maximizing
∑

i∈people

P (φi | σ)

di = 1 if person i gets a free ice cream sample and 0 otherwise
k maximum number of free ice cream samples we can distribute
φi person i buys ice cream
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Other examples of Stochastic Constraint Optimization Problems (SCOPs):
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↓

↓

↑

↑

↑

↑
↑

↑

↑

Powergrid Reliability Landscape Connectivity

Common property: probability distributions are monotonic, which we exploit in a new constraint propa-
gation algorithm for a Stochastic Constraint on Monotonic Distributions (SCMD).

Background: SCOPs are hard
Problem:
I Weighted Model Counting (NP-hard);
II Exponential number of possible strategies.

Naïve enumeration and evaluation does not scale.

Our approach:
I Compile φ to Ordered Binary Decision Diagram (OBDD)

for tractable WMC;
II Use Constraint Programming (CP) technology to effi-

ciently traverse search space.

Step 3: use OBDD to evaluate strategy
P (φe | σ = {da, dc}) ≥ θ
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OBDD is a summary of truth table of eq. (3) and encodes
the probability distribution (not the solutions to the con-
straint). Paths from root to leaf 1 represent models of φe.

Upward sweep: for each OBDD node r, compute score:

vr = w · vhi + (1− w) · vlo. (1)

Computing v11 = P (φ | σ) is O (|OBDD|). This is
prohibitive if we have to do it an exponential number of times.
We evaluate P (φ | σ) ≥ θ for many different σs.

Step 1: logical model of problem
a b

c

e

pab

pac pbc

pce

da db

dc

de

(Simplifying) assumptions for this
poster:

• If a person receives a free sam-
ple, they will buy the ice cream
in the future;

• A person i influences a person
j with probability pij = pji;

• If a person i buys the ice cream
and influences person j, then j
will buy the ice cream.

Two types of Boolean variables:

di ∈ {0, 1} (by decision),

tij ∈ {0, 1} (by chance pij),

whereP (tij = 1) = pij andP (tij = 0) = 1−pij .

Step 2: define stochastic constraint
Observe: maximization is repeated constraint solving, in-
creasing the lower bound θ that we have to meet.
For simplicity of this poster, suppose we just want to solve

P (φe | σ) ≥ θ (with 0 < θ ≤ 1), (2)

where person e buys ice cream iff φe = >:

φe = de ∨ (dc ∧ tce) ∨ (da ∧ tac ∧ tce)∨
(db ∧ tbc ∧ tce)∨
(da ∧ tab ∧ tbc ∧ tce)∨
(db ∧ tab ∧ tac ∧ tce)

(3)

Exact solving of eq. (2) requires
• Weighted Model Counting (WMC);
• evaluating quality of (all) strategies.

Existing methods not Generalized Arc Consistent (GAC).

Step 4: solve with SCMD propagator
Idea: exploit monotonicity to determine which decision vari-
ables must be > in order to satisfy eq. (2) (contribution).

Naïve SCMD propagator on OBDD (contribution):
• Define σ′ as an optimistic extension of partial strategy σ,

where all unbound decision variables are>;
• For each unbound decision variable d, evaluate
P (φ | σ′ \ d, d = ⊥) with one sweep of the OBDD
per free decision variable;

• If P (φ | σ′ \ d, d = ⊥) < θ, fix d to > (this
guarantees GAC).

This algorithm has time complexity O(nm), with n the
number of unbound decision variables andm = |OBDD|.

Smarter SCMD propagator on OBDD (contribution):
• Use derivatives of unbound decision variables to evaluate
P (φ | σ′ \ d, d = ⊥);

• Compute these derivatives for all unbound decision vari-
ables simultaneously with two sweeps of the OBDD.

Resulting algorithm has (linear) time complexity O(n +
m). Partial sweeps can make the algorithm more ef-
ficient in practice. Space complexity is lower than GAC-
guaranteeing version of decomposition-based method.

Experimental evaluation
We compare the performance of our new linear and sub-
linear global propagators to existing CP-based (one that
guarantees GAC and one that does not) and MIP-based
decomposition methods on various benchmarks.
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constraint threshold k (strict ↔ loose)

We investigate how well our sub-linear global propagator
scales with increasing OBDD size and compare this to how
well an existing MIP-based decomposition method scales
with OBDD size. In this figure ‘big‘ means that the OBDD is
not minimized.
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code & info
github.com/latower/SCMD
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