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Background: SCOPs are hard

The Viral Marketing problem

running example of a Problem:
Stochastic Constraint Optimization Problem (SCOP): % oA a | Weighted Model Counting (NP-hard);
/ /

Il Exponential number of possible strategies.

probabilistic spread of influence (word-of-mouth);

constraint on number of free ice cream samples we distribute; Naive enumeration and evaluation does not scale.

optimal decision making: maximize expected # people who buy ice cream. 0.8 0.1 |
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Common property: probability distributions are monotonic, which we exploit in a new constraint propa- : @ - @ -
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gation algorithm for a Stochastic Constraint on Monotonic Distributions (SCMD). > ' 0 3
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\ / ooster: creasing the lower bound @ that we have to meet. / : L0 ’ v Vo 1
/ D \ For simplicity of this poster, suppose we just want to solve Lo Y b 1 m
dg acbedy « If a person receives a free sam- weightw ', | V1i|dy 0
\ / ple, they will buy the ice cream P(¢p. | o) >0 (witho <6 <1), (2 reflects % 1 > - .- /O 1
g in the future; probability ¥ “1.1—"/ ~ !
c « A person 2 influences a person where person e buys ice cream iff ¢, = T : or decision () 1
Dee 7 with prOb?.blh’[y Dij = JUT Vo = do V (de AtV (do Atue ANol)V |
* |f a person 2 buys the ice cream OBDD is a summary of truth table of eq. (3) and encodes
d I and influences person 7, then ) (do A toe Nlee) V (3) the probability distribution (not the solutions to the con-
e~ will buy the ice cream. (do ANtop Npe ANteo) V straint). Paths from root to leaf 1 represent models of @,.
| E> (dp ANtop ANtge Ntee) E> Upward sweep: for each OBDD node 7, compute score:
Two types of Boolean variables:
Exact solving of eq. (2) requires Up = W * Vp4 (1 — w) * Vio- (1)

d; € {0,1} (by decision), » Weighted Model Counting (WMC):;

/ { ’ } (bY Y ‘7)’ evaluating quality of (all) strategies. prohibitive if we have to do it an exponential number of times.
where P (f;; = 1) = p;jand P (1;; = 0) = 1 —pj;. Existing methods not Generalized Arc Consistent (GAC). We evaluate P(¢ | o) > 6 for many different os.
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lve with SCMD propagator

Experimental evaluation

We compare the performance of our new linear and sub- We investigate how well our sub-linear global propagator Idea: exploit monotonicity to determine which decision vari-
linear global propagators to existing CP-based (one that scales with increasing OBDD size and compare this to how ables must be T in order to satisfy eq. (2) (contribution).
guarantees GAC and one that does not) and MIP-based well an existing MIP-based decomposition method scales
decomposition methods on various benchmarks. with OBDD size. In this figure ‘big° means that the OBDD is Naive SCMD propagator on OBDD (contribution):
not minimized. . Define o’ as an optimistic extension of partial strategy o,
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o 5 10 15 2 o0 20 40 w0 8 f W [10° - \ ¢ Resulting algorithm has (linear) time complexity O(n +
number _Of Varla:b‘les =71 number 0‘f Varlal?l‘e:s = 120 | | | | | | =t m) Partlal sweeps can make the algonthm more ef-
of which decision = 20 of which decision = 60 0] 10 20 30 0 10 20 30 40 . : . : .
|OBDD| = 6504 IOBDD| = 1898 r = 10.7 trmin = 326 s r— 10.4 tmin = 1.7 h ficient in practice. Space complexity is lower than GAC-
constraint threshold k (strict <+ loose) constraint threshold k (strict <+ loose) guaranteeing version of decomposition-based method.
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