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Step 1: create logical model of PRP

Natural disasters may cause power lines to break. Reinforcing power lines increases the probability that they remain intact. Two simplifications for this poster:

example of a :; * Cyy = 1 forany line (u, v)

- the probability that line (w,wv) remains intact is

Stochastic Constraint Optimisation Problem € einforced
San  § (SCOP): T Puv 11N o.rce
Francisco probability: chance determines if a line remains intact; 0 otherwise

constraint: guarantees on expectation;
optimal decision making: minimise costs.

Problem: Find a strategy o (a set of decisions)
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Question: Which power lines do we choose to ¢; building 2 is connected to at least one power plant d., € {0,1} (by decision),
reinforce, to guarantee that the expected number k. minimum expected number of connected buildings tuo € {0,1} (by chance p,,.,).
of buildings still connected to a power plant after Cuv cost of reinforcing power line (u, v)

(w, v) is intact post-disaster iff d,,., A £,,, = T holds.
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a disaster is at least k, and minimise the costs? d.., = 1 if we reinforce line (u, v) and O otherwise

Background: SCOPs are hard Background: Weighted Model Counting il Step 2: define stochastic constraint

Problem: Given a strateqy o0 = {dab, daods Abds dcd} For simplicity of this poster, suppose we just want to solve
A WNC is #P-complete (at least as hard as NP); (dop = dgg = dpg = deg = T,dge. = L).
B Exponential number of possible strategies. < < P (¢ac | o) 2 0, (1)
) | | Sum the weights of the models (solutions) of
Naive enumeration and evaluation does not scale. Gac | & = (taa ANtea) V (tap Ao Ateg): where 0 < 6 < 1, cis connected to a iff @4 = T holds
model weight and where
Our approach:
A Compile ¢ to Ordered Binary Decision Diagram (OBDD) {tads tea} 5+.6-.8-.0-.1=.0072 Pac = (dac N tac) V (dag N lag A dea N tea) (2)
for traCtable WMC, {tac, tad, tcd} 3 y 4: . 8 . 5 y ]_ — 0048 \/ (da,b /\ ta,b /\ dbd /\ tbd /\ dcd /\ tcd)
B Use Constraint Programming (CP) technology to effi- {tavs tads toas teat 7-.4-.8-.5-.1=.0112

Exact solving eqg. (1) requires
« Weighted Model Counting (WMC);
P (¢pgc | o) = .087 + evaluating quality of (all) strategies.

Step 4: decompose OBDD and solve

Equation (1) is a global constraint on OBDD.
Cut it up into local constraints using eq. (3).
Solve with CP solver.
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1. Local constraints are not Domain Consistent.

ciently traverse search space. @

Step 3: use OBDD to evaluate strategy

P (¢ac | o)
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Alternative step 4: domain consistent global constraint on OBDD

] l@ . Goal: Create global constraint that is domain consistent. Solution: Incrementally compute global change in
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_ g ' V2 Y Method: Detect which power lines are crucial and must be score for a ch_ange in decision variable d, using
!B @ ‘1 reinforced to satisfy eq. (1). local information:
; ) ‘ | | | ] )
. T\ Observe: reinforcing more lines cannot decrease P (@qc)- v( — ) 2 (rd )
| : .6 L > .3 1 Use this for global constraint propagation algorithm that OVroot (1) — Z p(ra) —
We'fgljhttw ‘M— E> guarantees domain consistency. od SomhD Nt
retriecCls vl .’ - Td d
- RPN -0 4 1 . : _
probalpll_lty qm‘2¢ _____ \‘Av App_roach. in eacr,].node of search tree, propagate current =P(¢|o))—P(¢p]| o\ {d},d= 1)
or decision 0 1 partial strategy o: (4)
« select unbound d: OBDD, all OBDD nodes labelled with d
OBDD is summary of truth table of eq. (2). Paths from root + construct optimistic strategy o”-: p(ry) computed w?th downward sweep of OBDD
to leaf 1 represent models of (.. extend o’ with d’ = T for each unbound d’; v(ry) computed with eq. (3) upward sweep of
it P (¢ | o\ {d},d = 1) ¥ 6: “/ OBDD,
Upward sweep: for each OBDD node 7, compute score: T y & — -
update o’ < o’ U {d = T}. Only two sweeps of OBDD needed to compute p(7.) and
V. = W -V + (1 — w) -« v (3) _ _ N v(7r,4) for each unbound d.
Optimal search space pruning, contrary to decomposition.
o _ Two sweeps are enough to compute eq. (4) for each d.
Computing v12 = P(¢ | o) is O ((OBDD|) (linear Problem: complexity is O (mmn) with m = |OBDD| and o
instead of exponential). 1 the number of unbound decision variables. Complexity is O(m + n).
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