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Motivation
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Problem
▶ There will always be an instance whose

encoding is too big.

▶ Smaller encoding does not always lead to
faster solving.

Goal
Make encoding exponentially more succinct
without sacrificing speed.

Target image from www.freepik.com.



Main contributions
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A case study that reduces the NP-hard generalised
identifying code set (GICS) problem to the compu-
tationally harder independent support problem.

A new solver: gismo.
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k Experiments that demonstrate the effectiveness of our
reduction and gismo.
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Problem (1/4)
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Problem (2/4)
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signature

t0 t1

{B} {B} {B}
{G} ∅ {B}
{O} ∅ ∅
{R} ∅ {B}
{P} ∅ ∅

{B,G} {B} {B}
{B,O} {B} {B}

...
...

...
{O,R,P} ∅ {B}

...
...

...
∅ ∅ ∅
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Problem (3/4)
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signature

t0 t1

{B} {B} {B}
{G} ∅ {B,O}
{O} {O} {O,P}
{R} ∅ {B,O,P}
{P} {P} {O,P}

{B,G} {B} {B,O}
{B,O} {B,O} {B,O}

...
...

...
{O,R,P} {O,P} {B,O,P}

...
...

...
∅ ∅ ∅
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Problem (4/4)
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signature

t0 t1

{B} {B} {B}
{G} ∅ {B}
{O} {O} {O,P}
{R} ∅ {B,O,P}
{P} {P} {O,P}
∅ ∅ ∅

Example:
k = 1, D = {B,O,P}
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The set of rooms with a detector, D, is
called a generalised identifying code set
(GICS) (Karpovsky, Chakrabarty, and Levitin

1998) for positive integer k if each set of at
most k fires has a unique signature.

Problem: minimise |D|



Problem (4/4)
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signature

t0 t1

{B} {B} {B}
{G} ∅ {B}
{O} ∅ {P}
{R} ∅ {B,P}
{P} {P} {P}
∅ ∅ ∅

Example:
k = 1, D = {B,P}

B

G

P

R

O

B

G

P

R

O

⟨{B}, {B}⟩ ⟨∅, {B,P}⟩

⟨∅, {B}⟩

⟨{P}, {P}⟩

⟨∅, {P}⟩

The set of rooms with a detector, D, is
called a generalised identifying code set
(GICS) (Karpovsky, Chakrabarty, and Levitin

1998) for positive integer k if each set of at
most k fires has a unique signature.

Problem: minimise |D|



Applications of Identifying Code Sets
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LIES Identifying sources of misinformation (Basu and Sen 2021a).

Identifying criminals in social networks (Basu and Sen 2021b).

Satellite deployment (Sen, Goliber, Basu, Zhou, and Ghosh 2019),

(Latour, Sen, Basu, Zhou, and Meel 2024).

Satellite image: Flaticon.com



Solving the GICS problem
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Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

Encode as integer-linear program (ILP).

▶ #constraints exponential in k.

▶ Checking if candidate is a solution:
polytime.

▶ Cardinality-minimal solution D.

New approach
(contribution)

Reduce GICS problem to finding a
minimal independent support (IS).

▶ #clauses linear in k.

▶ Checking if candidate is an IS:
co-NP.

▶ Set-minimal solution D.



Background: Propositional Logic
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Solution σ : X 7→ {0, 1} maps variables to truth values.

Example: F (X) := (x1 ∨ x2) ↔ x3

x1 x2 x3

σ1 1 1 1
σ2 1 0 1
σ3 0 1 1
σ4 0 0 0

Projection set: S := {x1, x3}

|Sol↓S(F )| ≤ |Sol(F )|

x1 x2 x3

σ1 1 1 1
σ2 1 0 1
σ3 0 1 1
σ4 0 0 0

Projection set: I := {x1, x2} is an
independent support (Chakraborty, Fremont,

Meel, Seshia, and Vardi 2014) of F (X).

|Sol↓I(F )| = |Sol(F )|



Contribution: Reduction of GICS to GIS
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⟨{B}, {B}⟩ ⟨∅, {B,P}⟩

⟨∅, {B}⟩

⟨{P}, {P}⟩

⟨∅, {P}⟩ Our method
▶ Encode GICS in CNF formula

▶ each solution corresponds to the
signature sU of a U ⊆ V with |U | ≤ k;

▶ linear size.

▶ Two variables per node, grouped.

▶ Independent support encodes solution D.



Example
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Two variables per node, e.g.,

▶ xB models at t0

▶ yB models at t1

X (S0
U , at t0) Y (S1

U , at t1)

xB xG xO xR xP yB yG yO yR yP S0
U S1

U

∅ 0 0 0 0 0 0 0 0 0 0 ∅ ∅
{B} 1 0 0 0 0 1 1 0 1 0 {B} {B,G,R}
{G} 0 1 0 0 0 1 1 1 0 0 {G} {B,G,O}
{O} 0 0 1 0 0 0 1 1 1 1 {O} {G,O,P,R}
{R} 0 0 0 1 0 1 0 1 1 1 {R} {B,O,P,R}
{P} 0 0 0 0 1 0 0 1 1 1 {P} {O,P,R}



Example
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R

OG

B

P

Two variables per node, e.g.,

▶ xB models at t0

▶ yB models at t1

X (S0
U , at t0) Y (S1

U , at t1)

xB xG xO xR xP yB yG yO yR yP S0
U S1

U

∅ 0 0 0 0 0 0 0 0 0 0 ∅ ∅
{B} 1 0 0 0 0 1 1 0 1 0 {B} {B}
{G} 0 1 0 0 0 1 1 1 0 0 ∅ {B}
{O} 0 0 1 0 0 0 1 1 1 1 ∅ {P}
{R} 0 0 0 1 0 1 0 1 1 1 ∅ {B,P}
{P} 0 0 0 0 1 0 0 1 1 1 {P} {P}



Results
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Size

Largest network (|V |):

encoded solved

SOTA 494 494
gismo 227 320 21 363

improvement 460× 43×

SOTA: k = 1
gismo: for all tested k.

Majority of instances: cardinality of
solution close or equal to optimum.

Time
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Solving the Identifying Code Set Problem with Grouped Independent Support
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Reducing to a computationally harder problem
allows us to model and

solve much larger problem instances.

full paper gismo more info

www.ijcai.org/proceedings/2023/219 github.com/meelgroup/gismo www.annalatour.nl/publications

https://www.ijcai.org/proceedings/2023/219
https://github.com/meelgroup/gismo
https://latower.github.io/publications
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