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Problem
There will always be a problem whose encoding is too big.
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Sacrifice some desiderata (e.g., theoretical guarantees).
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Which trade-offs can we make for an exponentially more succinct encoding?
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A case study that reduces the NP-hard generalised
identifying code set (GICS) problem to the compu-
tationally harder GIS problem.

An extension of the independent support of a Boolean
formula: Grouped Independent Support (GIS).

A new solver, gismo, for finding a grouped independent
support.
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LIES Identifying sources of misinformation (Basu and Sen 2021a).

Identifying criminals in social networks (Basu and Sen 2021b).

Satellite deployment (Sen, Goliber, Basu, Zhou, and Ghosh 2019).

Satellite image: Flaticon.com
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Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).

2. Solve with CPLEX.

▶ Exponential # constraints.

▶ Checking if candidate is a solution:
polytime.

▶ Cardinality-minimal solution D.

New approach
(contribution)

1. Reduce GICS problem to finding a
minimal grouped independent
support (GIS).

2. Use gismo to find a GIS.

▶ Linear # clauses.

▶ Checking if candidate is a GIS:
co-NP.

▶ Set-minimal solution D.
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Solution σ : X 7→ {0, 1} maps variables to truth values.

Example: F (X) := (x1 ∨ x2) ↔ x3

x1 x2 x3

σ1 1 1 1
σ2 1 0 1
σ3 0 1 1
σ4 0 0 0

|Sol↓S(F )| ≤ |Sol(F )|

x1 x2 x3

σ1 1 1 1
σ2 1 0 1
σ3 0 1 1
σ4 0 0 0

Projection set: I := {x1, x2} is an
independent support (Chakraborty, Fremont,

Meel, Seshia, and Vardi 2014) of F (X).

|Sol↓I(F )| = |Sol(F )|
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⟨{P}, {P}⟩

⟨∅, {P}⟩ Our method
▶ Encode GICS in CNF formula

▶ each solution corresponds to the
signature sU of a U ⊆ V with |U | ≤ k;

▶ linear size.

▶ Two variables per group.

▶ One variable group for each node.

▶ Use gismo to find minimal GIS.

▶ Groups in GIS correspond to nodes in D.
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Solving the Identifying Code Set Problem

with Grouped Independent Support

Anna L.D. Latour1 , Arunabha Sen2 , Kuldeep S. Meel1

1. Generalised Identifying Code Set (GICS) problem

Γ := (V,E)

D := {B,P}

B
R

P
G

O

Closed 1-neighbourhoods of (sets of) nodes:

N
+
1
(v) :=

{v} ∪N1(v)
(for v ∈ V )

N
+
1
(U) :=

⋃

v∈U

N
+
1
(v) (for U ⊆ V )

Given a set of nodes D ⊆ V , we define the signature of

another set of nodes U ⊆ V as sU :=
〈
S0
U
, S

1
U

〉
.

U

S0
U
:=

D ∩ U

S1
U
:=

D ∩N
+
1
(U)

∅
∅

∅

{B} {B}
{B}

{G} ∅
{B}

{O} ∅
{P}

{R} ∅
{B,P}

{P} {P}
{P}

{B,G} {B}
{B}

{B,O} ∅
{P}

...
...

...

D is a generalised identifying code set (GICS) [KCL1998, SGBZG2019]

of ⟨Γ, k⟩ if each U ⊆ V with |U | ≤ k, has a unique signature sU .

GICS problem: minimise |D|.

2. Previous state of the art

Encode the problem into an integer-linear pro-

gram (ILP) and solve with off-the-shelve MIP solver

CPLEX [PBPBS2020].

• Checking if a candidate is a solution: polytime.

• Returns cardinality-minimal solution.

• Problem: encoding has O

((|V |
k

)2) constraints.

3. Independent Support

Solution σ : X 7→ {0, 1} maps variables to truth values.

Example formula: F (X) := (x1 ∨ x2) ↔ x3

Projection set: I := {x1, x2}

x1
x2

x3

σ1
1 1 1

σ2
1 0 1

σ3
0 1 1

σ4
0 0 0

|Sol↓I(F )| = |Sol(F )|

I is an independent support [CFMSV2014] of F (X).

Key property: an independent support preserves the

cardinality of its solution set after projection.

4. Grouped Independent Support

Extension of independent support.

Given: F (X) and a partition G of variables X.

I ⊆ G is a grouped independent support (GIS) of

F (X) if
⋃

G∈IG
is an independent support of F (X).

5. New Approach

Encode GICS problem as CNF F (Z) with partition G of

Z. Use new solver gismo to find a GIS for ⟨F (Z),G⟩.

• Checking if a candidate is a solution: co-NP.

• Gismo returns set-minimal solution.

• Encoding has O (k · |V |+ |E|) clauses (linear!).

by reducing to a

computationally

harder
problem, we can

exponentially

decrease
the encoding size, and

solve much

larger
instances

Reduction of GICS to GIS (example)

Solutions of F1(X ∪ Y,A) projected on GIS I = {GB := {xB, yB
}, GP := {xP, yP

}} ⊆ G:

Observations:

• Bijective relation between

set of solutions and set of

signatures.

• All projected solutions are

unique.

• Hence, all signatures are

unique.

X (S0
U
)

Y (S1
U
)

U xB xG xO xR xP yB yG yO yR yP S0
U

S1
U

∅ 0 0 0 0 0 0 0 0 0 0 ∅ ∅

{B} 1 0 0 0 0 1 1 0 1 0 {B} {B}

{G} 0 1 0 0 0 1 1 1 0 0 ∅ {B}

{O} 0 0 1 0 0 0 1 1 1 1 ∅ {P}

{R} 0 0 0 1 0 1 0 1 1 1 ∅ {B,P}

{P} 0 0 0 0 1 0 0 1 1 1 {P} {P}

6. Reduction of GICS to GIS

Variable groups:

G := {Gv := {xv, yv} | v ∈ V }

= {GB, GG, GO, GR, GP}

Constraints:

Fdetection :=
∧

v∈V


yv ↔

∨

u∈N
+
1
(v)

xu




Fcardinality,k
:=

∑

v∈V

xv ≤ k

Transform to CNF:

Fk(X ∪ Y,A) :=
Fdetection ∧ Fcardinality,k

Number of clauses is linear in problem size:

O (k · |V |+ |E|)

7. Results

Our experiments show the following:

• Model size scales linearly with problem size.

• Gismo solves 8× more instances than previous

state of the art.

• Gismo is 2–6 times faster in terms of PAR2, and up

to 520× faster in terms of median running time.

• For the majority of instances, gismo’s solution is at

most 10% larger than that of the state of the art.

• Gismo solves 43× larger instances than previous

state of the art, and for larger values of k.
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