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A case study that reduces the NP-hard generalised
identifying code set (GICS) problem to the compu-
tationally harder GIS problem.

An extension of the independent support of a Boolean
formula: Grouped Independent Support (GIS).

A new solver, gismo, for finding a grouped independent
support.

Experiments that demonstrate the effectiveness of re-
ducing GICS to GIS and solving with gismo.
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Applications of Identifying Code Sets

p-H

@\%/ Identifying sources of misinformation (Basu and Sen 2021a).

Identifying criminals in social networks (Basu and Sen 2021b).

Satellite deployment (Sen, Goliber, Basu, Zhou, and Ghosh 2019).

Satellite image: Flaticon.com
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Solving the GICS problem

Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).
2. Solve with CPLEX.

8/12



Solving the GICS problem

Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).
2. Solve with CPLEX.

> Exponential # constraints.

8/12



Solving the GICS problem

Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).
2. Solve with CPLEX.

> Exponential # constraints.

New approach
(contribution)

1. Reduce GICS problem to finding a
minimal grouped independent
support (GIS).

8/12



Solving the GICS problem

Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).
2. Solve with CPLEX.

> Exponential # constraints.

New approach
(contribution)

1. Reduce GICS problem to finding a
minimal grouped independent
support (GIS).

» Linear # clauses.

8/12



Solving the GICS problem

Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).
2. Solve with CPLEX.

> Exponential # constraints.

» Checking if candidate is a solution:

polytime.

New approach
(contribution)

1. Reduce GICS problem to finding a
minimal grouped independent
support (GIS).

> Linear # clauses.

» Checking if candidate is a GIS:
co-NP.

8/12



Solving the GICS problem

Former state of the art

. Encode problem in integer-linear
program (ILP).
. Solve with CPLEX.

Exponential # constraints.

Checking if candidate is a solution:

polytime.
Cardinality-minimal solution D.

New approach

. Reduce GICS problem to finding a

minimal grouped independent
support (GIS).

. Use gismo to find a GIS.

Linear # clauses.

Checking if candidate is a GIS:
co-NP.

Set-minimal solution D.
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Background: Propositional Logic
Solution o : X +— {0,1} maps variables to truth values.
Example: F(X) := (21 V x2) > a3

‘ X T2 T3

o1 | 1 1 1
()] 1 0 1
o3 | 0 1 1
o0 | 0O 0 O
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Background: Propositional Logic
Solution o : X +— {0,1} maps variables to truth values.

Example: F(X) := (z1 V x2) <> 23

‘ T T3 )

o1 | 1 1 o1 | 1 1

g9 1 1 g9 1 0

g3 0 1 o3 0 1

oq4 | O 0 o4 | O 0
Projection set: S := {x1,z3} Projection set: I := {x1,x2} is an

independent support (Chakraborty, Fremont,

‘SOlis(F” < |SOZ(F)’ Meel, Seshia, and Vardi 2014) of F(X)

’SOZ¢[(F)| = ‘SOZ(F)’
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Contribution: Reduction of GICS to GIS

(2,{B}) (@.{P}) Our method

» Encode GICS in CNF formula

e Q » each solution corresponds to the

signature sy of a U C V with |U| < k;
e > linear size.

» Two variables per group.

e e (P}, {P}) .
» One variable group for each node.

(B}, {BY) (@, {B,P}) » Use gismo to find minimal GIS.

» Groups in GIS correspond to nodes in D.
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