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Problem
There will always be a problem whose encoding is too big.

Solution
Sacrifice some desiderata (e.g., theoretical guarantees).

Question
Which trade-offs can we make for an exponentially more succinct encoding?
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A case study that reduces the NP-hard generalised
identifying code set (GICS) problem to the compu-
tationally harder GIS problem.

An extension of the independent support of a Boolean
formula: Grouped Independent Support (GIS).

A new solver, gismo, for finding a grouped independent
support.
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Applications of Identifying Code Sets
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LIES Identifying sources of misinformation (Basu and Sen 2021a).

Identifying criminals in social networks (Basu and Sen 2021b).

Satellite deployment (Sen, Goliber, Basu, Zhou, and Ghosh 2019).

Satellite image: Flaticon.com
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Former state of the art
(Padhee, Biswas, Pal, Basu, and Sen 2020)

1. Encode problem in integer-linear
program (ILP).

2. Solve with CPLEX.

▶ Exponential # constraints

(O
((|V |

k

))
).

▶ Checking if candidate is a solution:
polytime.

▶ Cardinality-minimal solution D.

New approach
(contribution)

1. Reduce GICS problem to finding a
minimal grouped independent
support (GIS).

2. Use gismo to find a GIS.

▶ Linear # clauses
(O (k · |V |+ |E|)).

▶ Checking if candidate is a GIS:
co-NP.

▶ Set-minimal solution D.
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Solution σ : X 7→ {0, 1} maps variables to truth values.

Example: F (X) := (x1 ∨ x2)↔ x3

x1 x2 x3

σ1 1 1 1
σ2 1 0 1
σ3 0 1 1
σ4 0 0 0

|Sol↓S(F )| ≤ |Sol(F )|

x1 x2 x3

σ1 1 1 1
σ2 1 0 1
σ3 0 1 1
σ4 0 0 0

Projection set: I := {x1, x2} is an
independent support (Chakraborty, Fremont,

Meel, Seshia, and Vardi 2014) of F (X).

|Sol↓I(F )| = |Sol(F )|
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Given: F (X), partition G of variables X.
I ⊆ G is a grouped independent support of F (X) if⋃

G∈I G is an independent support of F (X).

F (X) := (x1 ∨ x2)↔ x3

Example 1

G1 := {{x1, x2} , {x3}}

I1 = {{x1, x2}} is a grouped
independent support of ⟨F (X),G1⟩.⋃

G∈I1 G = {x1, x2} is an
independent support of F (X).

Example 2

G2 := {{x1} , {x2, x3}}

I2 = {{x1} , {x2, x3}} is a grouped
independent support of ⟨F (X),G2⟩.⋃

G∈I2 G = {x1, x2, x3} is an
independent support of F (X).
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F (X) := (x1 ∨ x2)↔ x3

Example 1

G1 := {{x1, x2} , {x3}}

I1 = {{x1, x2}} is a grouped
independent support of ⟨F (X),G1⟩.⋃
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I2 = {{x1} , {x2, x3}} is a grouped
independent support of ⟨F (X),G2⟩.⋃

G∈I2 G = {x1, x2, x3} is an
independent support of F (X).
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⟨∅, {P}⟩ Our method
▶ Encode GICS in CNF formula

▶ each solution corresponds to the
signature sU of a U ⊆ V with |U | ≤ k;

▶ linear size.

▶ Two variables per group.

▶ One variable group for each node.

▶ Use gismo to find minimal GIS.

▶ Groups in GIS correspond to nodes in D.
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▶ xB models at t0

▶ yB models at t1

Partition: G := {Gv := {xv, yv} | v ∈ V }
= {GB, GG, GO, GR, GP}

X (S0
U , at t0) Y (S1

U , at t1)

xB xG xO xR xP yB yG yO yR yP S0
U S1
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Background: Independent Support

Independent Support (Chakraborty, Fremont, Meel, Seshia, and Vardi 2014)

Given a Boolean formula F (X) on Boolean variables X.
A set I ⊆ X is an independent support of F if the following holds:

∀ σ1 , σ2 ∈ Sol(F ) .
(
σ1↓I = σ2↓I

)
⇒

(
σ1 = σ2

)σ := X 7→ {0, 1} is an assignment of truth values to variables X

set of solutions of F (X) solution σ2 projected

on I ⊆ X
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Grouped Independent Support: more formally

Grouped Independent Support

Given a Boolean formula F (Z,A) with Z ∩A = ∅ and a partitioning G of Z into
non-empty sets. The subset I ⊆ G is a grouped independent support (GIS) of ⟨F,G⟩ if
the following holds:

∀σ1, σ2 ∈ Sol(F ).
(
σ
1↓ sup(I) = σ2↓sup(I)

)
⇒

(
σ1↓Z = σ2↓Z

)
the support of I is sup (I) :=

⋃
G∈I G

solution σ2 projected on sup (I) ⊆ Z

solution σ2 projected on Z
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The gismo Algorithm (more detail)

Input: Formula F (Z) with partitioning of Z into G, a time limit τ .
Output: GIS I ⊆ G.
1: E ← {ei | zi ∈ Z}
2: Initialise ϕ

(
Z,A, Ẑ

)
3: Q← sup (G)
4: I ← ∅
5: for G ∈ G do
6: Q← Q \G
7: C ← Q ∪ sup (I)
8: ξ ←

∧m
zi∈C ei

9: for z ∈ G do
10: ψ ← ϕ ∧ ξ ∧ z ∧ ¬ẑ
11: sat← CheckSAT(ψ, τ)
12: if sat then
13: I ← I ∪ {G}
14: break
15: return I
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How to check for definability?

Define indicator variables E := {ei | zi ∈ Z}.
Define the invariant C ← Q ∪ sup (I) (always a GIS of ⟨F (Z),G⟩)
Define ξ :=

∧m
zi∈C ei.

Capture definability (Padoa 1901):

ψ
(
Z, Ẑ , z

)
:= F (Z) ∧ F

(
Z 7→ Ẑ

)
∧

m∧
j=1

ej → (zj ↔ ẑj) ∧ ξ ∧ z ∧ ¬ẑ .

Copy of Z

Original formula

Copy of formula with fresh variables

Forces zj = ẑj if True Forced equalities

Testing z
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How do the CNF models scale?
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How do the CNF models compare to the ILP models?
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